VICEPRESIDENCIA DE INVESTIGACIÓN ISSN
UNDC
Comparative efficacy of three sulfur formulations in controlling the olive mite (Phyllocoptruta oleivora) on Satsuma mandarin (Citrus unshiu) var. Okitsu, in Cañete, Peru
PDF (Spanish)
HTML (Spanish)

Keywords

liquid sulfur
citrus fruits
integrated pest management
Phyllocoptruta oleivora
agricultural sustainability

How to Cite

Comparative efficacy of three sulfur formulations in controlling the olive mite (Phyllocoptruta oleivora) on Satsuma mandarin (Citrus unshiu) var. Okitsu, in Cañete, Peru (P. S. Casachagua Iñeguez, R. Coaquira Incacari, & A. A. Montero Ravelo, Trans.). (2025). Revista De Investigación Cañetana, 4(2). https://doi.org/10.60091/ric.2025.v4n2.05

Share

Abstract

The olive mite (Phyllocoptruta oleivora) is considered an economically important pest in citrus fruits, as it compromises the external appearance of the fruit and reduces its commercial value, especially in export markets. This study compared the effectiveness of three forms of sulfur (micronized, wettable powder, and liquid) for controlling P. oleivora in Satsuma mandarins (Citrus unshiu) var. Okitsu under environmental conditions in the district of San Luis, Cañete (Peru). The experimental design was a randomized complete block design with four treatments and three replicates: T0 (control), T1 (powdered sulfur, 0.150 kg/200 L), T2 (powdered sulfur, 3 kg/200 L), and T3 (liquid sulfur, 0.8 L/200 L), with three applications separated by 10-day intervals. The incidence of damage and the population density of the mite per fruit were measured. Treatment T3 (liquid sulfur) proved to be the most effective, with an incidence reduced to 7% and an average of 0.37 mites per fruit, achieving 98% control in the third application. This superiority is explained by its better distribution, adhesion, and persistence on the fruit surface, which allowed for more homogeneous and lasting control. It is concluded that liquid sulfur is an efficient, sustainable, and low environmental impact alternative for the integrated management of P. oleivora in mandarins, promoting clean production and competitive agricultural systems for export.

PDF (Spanish)
HTML (Spanish)

References

Auger, P. (2003). Variations in acaricidal effect of wettable sulfur on Tetranychus urticae (Acari: Tetranychidae): Effect of temperature, humidity and life stage. Pest Management Science, 59(3), 221–227. https://doi.org/10.1002/ps.665

Childers, C. C., Rodrigues, J. C. V., & Welbourn, W. C. (2020). Host plants and damage of the citrus rust mite Phyllocoptruta oleivora (Ashmead). Experimental and Applied Acarology, 80(1), 17–31. https://doi.org/10.1007/s10493-019-00469-8

Correa, A., Osorio, R., Hernández, L., De la Cruz, E., Márquez, C., & Salinas, R. (2018). Control químico del ácaro rojo de las palmas Raoiella indica Hirst (Acari: Tenuipalpidae). Ecosistemas y Recursos Agropecuarios. https://doi.org/10.19136/era.a5nl4.1340

Darvish, M. T. (2025). Studying the effect of Liquid Sulfur SC 80% on cotton spider mite Tetranychus urticae (Koch) in cotton fields of Golestan Province. https://doi.org/10.11648/j.avs.20251303.12

Vanaclocha-Vanaclocha, V., Sáiz-Sapena, N., & Yanacocha, L. (2019). Sacroiliac joint pain: Is the medical world aware enough of its existence? Why not considering sacroiliac joint fusion in the recalcitrant cases? Journal of Spine Surgery, 5(3), 384–386. https://doi.org/10.21037/jss.2019.06.11

González-Cabrera, J., García, M., & Sánchez, D. (2023). Fumigant and contact activity of sulfur-based acaricides. Pest Management Science, 79(4), 1452–1461. https://doi.org/10.1002/ps.7332

Hoy, M. A. (2011). Agricultural acarology: Introduction to integrated mite management. CRC Press. https://doi.org/10.1201/b10909

Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

Li, F., Zhao, Y., & Zhang, J. (2023). Advances in sulfur-based acaricides for sustainable agriculture. Crop Protection, 167, 106078. https://doi.org/10.1016/j.cropro.2023.106078

McMurtry, J. A., de Moraes, G. J., & Sourassou, N. F. (2013). Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology, 18(4), 297–320. https://doi.org/10.11158/saa.18.4.1

Midthassel, A., Laumann, R., & Sæthre, M. G. (2021). Environmental effects on the efficacy of sulfur-based products in mite management. Crop Protection, 143, 105465. https://doi.org/10.1016/j.cropro.2021.105465

Ministerio de Comercio Exterior y Turismo [MINCETUR]. (2018). Perú es el principal exportador de mandarina, clementina y tangelo en América. https://www.mincetur.gob.pe/mincetur-peru-es-el-principalexportador-de-mandarina-clementina-y-tangelo-en-america/

Sander De Rouck, E., İnâk, E., Dermauw, W., & Van Leeuwen, T. (2023). Insect Biochemistry and Molecular Biology, 159, 103981. https://doi.org/10.1016/j.ibmb.2023.103981

Vacacela-Ajila, H. E., Oliveira, E. E., Lemos, F., Haddi, K., Colares, F., Gonçalves, P. H. M., Venzon, M., & Pallini, A. (2019). Effects of lime sulfur on Neoseiulus californicus and Phytoseiulus macropilis and on Tetranychus urticae. Pest Management Science. https://doi.org/10.1002/ps.5608

Van Leeuwen, T., Tirry, L., Yamamoto, A., Nauen, R., & Dermauw, W. (2015). The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 121, 12–21. https://doi.org/10.1016/j.pestbp.2014.12.009

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Prayor Silvert Casachagua Iñeguez, Roberto Coaquira Incacari, Alexéi Armando Montero Ravelo (Autor/a)

Downloads

Download data is not yet available.